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Abstract. Preliminary results of an artificial neural network approach to 3D image
reconstruction are reported. The set of (n − 1)-dimensional projections of then-dimensional
image and the pixels of the image itself constitute the input and output layers of the system,
respectively. The layers are directly interconnected via a network of synapses, each associated
with a specific weight. The network is trained using a supervised scheme: the projections of a
set of point patterns are fed into the network and the reconstructed images are compared to the
known patterns. The weights, organized as a matrix, are iteratively updated to minimize the mean
square error between the ideal and reconstructed patterns, until convergence is reached. Once
the training process is completed, the network can generalize and reconstruct any 3D density,
one plane at a time, from the one-dimensional slices of the 2D experimental data. In this
work, the network is trained to simultaneously deconvolute the ideal data from the experimental
resolution. The symmetry of the momentum density is inserted in the learning procedure to
reduce the memory requirements of the algorithm. The reconstructed data are compared with
those obtained from the standard filtered-back-projection method. The numerical simulations
considered show a reduction in mean square error of up to a factor of five compared to the
back-projection results.

1. Introduction

The two-dimensional angular correlation of annihilation technique (2D-ACAR), thanks to
its direct access to the electron momentum wave function amplitude, is a unique tool to
investigate the electronic structure of intermetallic compounds [1]. It is well known that
the data analysis of the large acquisition matrices produced in the 2D-ACAR experiments
is a very delicate and time consuming task. Probably the most challenging numerical
problem is the reconstruction of the full 3D momentum densityρ(p) or k-space density
ρ(k) from the 2D-ACAR projections. As the most useful information which can be obtained
from the knowledge ofρ(k) consists in the Fermi surface (FS), which is revealed by the
discontinuities ofρ(k) (usually denoted as Fermi breaks), the problem of the smearing of
these discontinuities due to a finite experimental resolution is another major issue of the
data analysis.

Up to now, these two problems have been tackled separately. Many methods of
reconstruction were considered by the 2D-ACAR experimenters. Some were borrowed
from medical imaging, such as the inverse Fourier transform methods, the most commonly
adopted one being the filtered-back-projection technique (FBP) [2]. More recently, Pecora
[3] applied a basic idea of Majumdar [4] to expand the momentum densities in spherical
harmonics and find the coefficients of the expansion on the basis of the projected data. In
this method the crystal symmetry is explicitly inserted into the reconstruction in order to

0953-8984/98/4610517+12$19.50c© 1998 IOP Publishing Ltd 10517



10518 M Biasini

reduce the degrees of freedom of the problem. Another treatment, proposed by Cormack [5]
and applied to positron data by Kontrym-Sznaid [6], reconstructs the 3D momentum density
on planes usually chosen to be perpendicular to the main symmetry axis. The reconstruction
of the full 3D momentum density is then performed by piling up the reconstructed planes.
This method, which is also based on polynomial expansion, was applied recently to obtain
the Fermi surface of yttrium [7].

The problem of deconvolving the experimental data from the smearing of the
experimental resolution is a recurring issue of the data analysis. Many recipes, including
iterative, filtering, maximum entropy algorithms were attempted [8, 9]. The maximum
entropy idea has recently been used in the 2D-ACAR field obtaining good results [10, 11].
The constraint to maximize the entropy has the benefit of reducing the noise-dependent
artefacts which are often present in the deconvolution techniques. However, care must
be exercised when one is trying to deconvolute the Fermi breaks. In fact, the entropy
of discontinuities such as those generated by the interruptions of the occupation of the
conduction bands (at the Fermi wavevectors,kF ) is much lower than that of the smooth
function generated by the smearing of these breaks by action of the experimental resolution.
Therefore, the maximum entropy algorithm might not be appropriate to recover the ideal
FS discontinuities.

Artificial neural networks (ANNs) were developed for a wide variety of computational
problems in pattern and language recognition, decision making and on line data analysis.
The term ‘neural network’ is applied to a class of parallel computational units which
are arranged in layers with a structure which imitates the architecture of the brain. The
common properties between ANNs and biological systems consist of parallel structures,
distributed memories and ability to learn from experience to solve new problems. The
multiple interconnections (synapses) of the network have weights to be adjusted through a
training procedure which is either supervised, when sample input output pairs are presented,
or unsupervised, when the network self-organizes [12]. This preliminary implementation
uses filtered projections as input data, trains the network assuming the crystal symmetry
and trying at the same time to reduce the smearing effect of the experimental resolution.
At this stage, the noise-free simulated images reconstructed via the trained network show a
clear improvement compared to the FBP results.

2. Method

In general, the action of projecting annD array over a discrete number of angles onto an
(n− 1)D detector can be described as

Pi =
Na∑
j

Tij Sj (1)

wherePi is the projection counts in bini, Tij is the weight of the contribution of thenD
array binj to the projection bini, Sj is the intensity of the binj andNa is the number
of pixels of thenD array. In the notation of equation (1) the sequence of the projections
and of the original array are viewed as single-column vectors which are interconnected via
the matrixTij . The reconstruction problem consists then of finding the inverse matrixT −1

ij

which recovers the original array from its projections, according to the expression

Si =
N×Nproj∑

j

T −1
ij Pj (2)
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whereNproj is the number of projections produced, each consisting ofN pixels. Although
in principle one could apply the method to 3D arrays and 2D projections, computer memory
limits render practically impossible a direct 3D reconstruction. As for other reconstruction
techniques, the process of reconstruction is split in the two-step procedure of reconstructing
2D planes and piling up the 2D planes to produce the original 3D array. In this case, if the
linear size of a square 2D reconstructed matrix isN , the sizes ofT −1

ij areN2×N ×Nproj .
The network is trained according to the generalized delta rule [13]. The approach

adopted here assumed that input and output layers were directly interconnected, i.e. that
hidden layers were absent. Under this assumption one could obtain a direct correspondence
between the neural network topology and the analytic description of equation (1). According
to the neural network general scheme, the responseOi of the output neurons are generated
via the equation

Oi = f
( N×Nproj∑

j

WijPj + θi
)

(3)

wherePj is the input layer, (here the pixels of the projected data),Wij are the interconnecting
synapses andf can be a sigmoidal function, a step function or just the identity. The
thresholdsθi , yielding additional degrees of freedom, are normally inserted when the
response of the output layer is not a linear function of the input layer. In the present
case, the linearity of the problem (and the agreement with equation (2)) requires that the
function f be the identity and that the thresholdsθi be set to zero. For all thet labelled
training pairs, consisting of some 2D patternsSti and their set of projectionsP tj , the outputs
Ot
i are generated via equation (3) and compared to the true patternsSti . The weights are

then iteratively updated as follows:

WN+1
ij = WN

ij +1Wij ≡ WN
ij + η

∑
t

δti P
t
j (4)

whereWN
ij andWN+1

ij are the values of the weights connecting the projection bin counts
P tj to the reconstructed pattern intensityOt

i before and after the(N + 1)th readjustment,
respectively,η is the training coefficient, to be optimized empirically, andδti is the
current difference between the actual and ideal outputs (Ot

i − Sti ). The correction1Wij is
obtained according to a feed-forward mechanism which uses the standard gradient descent to
minimize the mean square error (MSE) between the ANN reconstructed and ideal patterns.
The MSE is defined as

MSE=
Np∑
t

( N2∑
i

( N×Nproj∑
k

WikP
t
k − Sti

)2)
(5)

whereNp is the number of training patterns.
The iterative correction to the weights which appears in equation (4) then becomes

1Wij = −η∂MSE/∂Wij . The training should halt when the global MSE of the training set
has converged. Often, the correction to the weights is supplemented by an auxiliary term,
denoted as the momentum term, proportional to the correction to the weights of the previous
iteration [14]. The purpose of keeping a direction in theWij space slightly different from
that of the steepest descent is to reduce the chance of the MSE(Wij ) function becoming
trapped in local minima. The correction1Wij in equation (4) was then modified to

1WN+1
ij = η

∑
t

δti P
t
j + µ1WN

ij (6)

whereµ is the empirical proportionality constant of the momentum term.
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Figure 1. Flow chart of the training phase.

Figure 2. The point-like training matrices for a 4× 4 bin case.

Figure 1 shows a flow chart of the training procedure. The training pairs of this study
corresponded to point source matrices consisting of a single non-zero pixel (set to 1) in a
predefined field of view and the corresponding set of projections. Figure 2 shows, as an
example, the training matrices for a 4× 4 bin case.

After the training has ended anyN × N matrix can be reconstructed by applying the
weightsWij to its set of projections, according to equations (2) and (3). At first, the
algorithm was tested for small arrays. They consisted of an 8× 8 bin matrix and 16 bin
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Figure 3. The construction of the projection vector at a given angle. For each projection pixel
j , several rays intersect the matrixS and the pixels of interest (sayl, m) contribute toP(j) by
an amount proportional to the intensityS(l,m) times the average line segment across them.

(a) (b)

Figure 4. (a) A simulated 8× 8 channel matrix. (b) The matrix reconstructed via ANN.

projection vectors for 12 projection angles. The field of view of the training pairs covered
the whole matrix. When the bin number is so limited a special attention must be devoted to
the projection operator. Therefore, a special algorithm was implemented: several straight
lines (rays) per projection vector bin intersected the 2D matrix pixels and a fraction of the
pixel intensity proportional to the average ray segment across was included in the projection
bin in question (see figure 3). The operator was applied to generate the projections of the
training patterns and of the 2D matrices which were tested for reconstruction after the
training.

In this initial test the weightsWij were all initialized to 0.1. The training coefficientsη
and µ which optimized the results were 0.001 and 0.9 respectively, in agreement with
the values reported in the literature [15]. The iterative procedure was stopped at the
900th iteration, yielding an SME of≈0.1. The quality of the reconstruction operated
by the network was tested by monitoring the scatter between simulated matrices and the
corresponding reconstructed counterparts. Figures 4 and 5 show two 8× 8 bin examples.
Whereas figure 4 consists of some kind of structured features, figure 5 contains pure
noise. It appears that the reconstruction is almost perfect in trend and values of the pixel
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(a) (b)

Figure 5. (a) An 8× 8 channel matrix containing pure noise. (b) The matrix reconstructed via
ANN.

Table 1. Listing of the precision parameterPr , defined asPr = MSE/
∑
i Si , whereSi are the

simulated matrix pixels and MSE is the mean square error for the ANN or FBP reconstruction,
for the examples considered in this work.

Figure number Pr (ANN) Pr (FBP)

4 0.0013
5 0.006
7 5.9 25
8 2.2 16

10 3.0 64

intensities. One can define a quantitative parameterPr which describes the precision of
the reconstruction asPr = MSE

∑
i Si , whereSi are the simulated matrix pixels. The

Pr parameters of all the reconstructions of this work are reported in table 1. Results of
similar quality were obtained for any other 8× 8 matrix tested for reconstruction. These
examples show that with a sufficient number of projection pixels and ideal patterns the
reconstruction via ANN could be attained perfectly. However, when the sizes of the matrix
to reconstruct increase, the amount of CPU memory required overtakes the possibilities
of many work-stations commonly used for the data analysis. The consequent unavoidable
use of virtual memory increases enormously the time needed to reach convergence. For
example, for a 64× 64 matrix and 60 projections the sizes of both theWij matrix and
the matrix which includes the projections of the patterns are 4096× 60× 128 (up to a
total ≈6.3× 107 numbers). In practice, the 2D image is usually confined inside a circular
domain. Therefore, the sizes of the projection vector need to be equal to the linear sizes of
the 2D matrix as the necessary sample patterns are only those inside the circular domain.
For a 64× 64 2D array the weight sizes and projected pattern sizes could be reduced to
4096× 60× 64 and 4096× (π/4) × 60× 64 respectively (≈2.8× 107 numbers),at the
expense of an imperfect reconstruction. With this caveat, further studies concentrated on the
attempt to improve the FBP results, reconstructing and deconvoluting the smearing caused
by the resolution function.

The 2D matrix was assumed to have two inversion symmetry planes. In light of a future
use for 3D momentum density reconstruction this should not be seen as a limitation. The
crystal point symmetry group required should be at least C2nv and the rotation should be
performed about the C2n axis (withn = 1, 2, 3). The vast majority of the crystal structures
has symmetries equal or higher than C2nv.
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The patterns considered were only those contained in one quarter of a circle and during
the rotation their projections included also the contribution from the symmetrical pixels
which unveil when the projection axis is not contained in the inversion symmetry planes.

Figure 6. The 1D projection array for a specific rotationθ0 of a training pattern characterized by
having the pixel(x, y) different from zero. The contribution from symmetrical pixels consistent
with a C2v symmetry is included. The projection is convoluted with the experimental resolution.

The deconvoluting procedure consists simply of smearing the 1D projections of the
point-like matrices with a one-dimensional slice of the experimental resolution. Indeed, the
generalized delta rule, described by equations (4)–(6), aims at producing a network able
to recover simultaneously all theNp training matrices, independently of the degradation
suffered by their projections. As each 2D-ACAR spectrum can be viewed as a superposition
of delta-like functions at eachp-point, the network should be able to yield an approximate
reconstruction and deconvolution of any spectrum after the iteration procedure has
converged. Figure 6 shows, as an example, the 1D projection array, relative to a rotation
angleθ0, of the training pattern characterized by having the pixel(x, y) non-zero. Owing
to the symmetry, only the positive part of the projection array need be used for the
reconstruction. This method can easily be extended to higher symmetries. Moreover, to
expedite the convergence during the training, the weights at position(i, j) were initialized
to be non-zero only for(i, j) values consistent with the back-projection method and with
the symmetry of the matrix. Indeed, the back-projection reconstruction can be obtained
applying equation (2) to a matrix of unitary weightsWij where the [x + (n − 1)y]th row
of Wij differs from zero only at the positionsj for which j equals(|x| cosθn + |y| sinθn)
[2]. Here (x, y) is the pixel of the matrix with C2v symmetry to reconstruct andθn are
the various rotation angles. The initialization had to be consistent also with the fact that
the resolution broadens the response of the projection detector to a point source and with the
decision to convolute the projection profiles in input with the Fourier transform of the ramp
filter. The effect of this filtering, applied in the FBP technique, is to introduce negative (i.e.
non-zero) intensities at pixels near those for which the relationj = (|x| cosθ + |y| sinθ)
holds.
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The programs were written in the language IDL because of its high versatility and
graphic power and run on an IBM RISC990 machine. The computing time was strongly
dependent on the size of the matrices. For a 32×32 matrix to reconstruct and 33 projections
the training took about 10 minutes per iteration. The time increased to more than one hour
per iteration for a 48× 48 channel matrix and 37 projections. As the computing time was
so high the training was stopped after 100 iterations or so. Unlike the 8× 8 initial test, a
training coefficientη close to 100 was required. Such a large learning rate has previously
been reported [16, 17].

(c) (d)

Figure 7. Test of reconstruction for a 64× 64 matrix withC4v symmetry: (a) ANN; (b) FBP;
(c) and (d) original data. The (a) and (b) data were linearly interpolated to a size 128× 128
matrix.

(c) (d)

Figure 8. Test of reconstruction for a 64× 64 matrix withC4v symmetry: (a) ANN; (b) FBP;
(c) and (d) original data. The (a) and (b) data were linearly interpolated to a size 128× 128
matrix.
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Figure 9. The slice aty = 0 of figure 8 (positive part). The ANN and FBP are compared to
the original data (continuous lines).

(c) (d)

Figure 10. Test of reconstruction for a 96× 96 matrix with C2v symmetry: (a) ANN; (b) FBP;
(c) and (d) original data. The (a) and (b) data were linearly interpolated to a size 144× 144
matrix.

3. Results and discussion

The method could be applied in full for matrices up to 32× 32 channels. Owing to the
symmetry the weights obtained (a 322 × 33× 32 matrix) can reconstruct 64× 64 channel
matrices with inversion symmetry. A further attempt to increase the size of the matrix
was possible by eliminating the momentum term in equation (6) to reduce the amount of
memory of the program and apply the method to 48× 48 matrices. A Gaussian resolution
function, having a full width at half maximum of three channels, was assumed. In both
trainings, possibly due to an insufficient number of degrees of freedom of the weights, the
MSE converged to a value much higher than that attained in the 8× 8 bin initial test.
Therefore, it is useful to compare the MSEs to those obtained by applying the standard
FBP reconstruction method with a ramp filter. Figures 7 and 8 show two examples for
reconstructions of 64× 64 matrices with C4v symmetry. In both figures the lower part
shows the simulated matrix and the upper parts show the matrix reconstructed via the ANN
and FBP methods. ThePr parameters of all the examples considered, reported in table 1,
are clearly in favour of the ANN scheme. However, despite the improvement in the MSE,
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the quality of the ANN images is still only slightly better than the FBP ones. To illustrate
more clearly the deconvoluting effect of the ANN procedure, figure 9 shows the slice at
y = 0 of figure 8 comparing the simulated matrix with the ANN and FBP reconstructions.
It should be noted that in figure 9 the FBP data had to be shifted upward by 10% of their
maximum while the ANN data are raw. It appears that, at the expense of a modest increase
of noise, the ANN procedure is quite efficient in recovering the discontinuity at channel 11.
Figure 10 shows the comparison between the reconstructions by the ANN (figure 10(a))
and FBP (figure 10(b)) procedures for the 36× 36 matrix with C2v symmetry shown in
figure 10(c) or 10(d). As might be expected, the improvement in resolution between ANN
and FBP is less evident when the ratio between the sizes of the resolution function and the
linear size of the matrix decreases. On the other hand, the deconvolution method applied
in these tests brings in some kind of stability against the noise or faults introduced in the
projection (typical quality of the human brain, denoted as fault tolerance). For example,
unlike the case of the 8× 8 matrix, the results were independent of the algorithm used to
perform the projections. One drawback of the method is that the number of projections
must be decided once and for all prior to the learning process.

Figure 11. The projection procedure for 2D-ACAR spectrometers equipped with standard
electromagnets: the positron source is indicated by the circle labelled byS on the pole of the
electromagnet. The black spot on the sample represents the source image onto the sample.
The sample is rotated about thex crystal axis, as indicated by the arrow. The dashed frame
represents the detector plane, parallel to thex-direction and normal to thez-projection direction.

With regard to the deconvolution procedure it is worth mentioning the following: if
it were possible to perform the training procedure directly from the 2D projections one
could consider in full the smearing of a delta-like function at (px0, py0, pz0) over the
2D projected matrix and teach the network how to recover the point-like sources. When
one reconstructs the 3D array plane by plane the deconvolution procedure is incomplete
because the reconstructed planes are considered independently. However, the features of
the 2D-ACAR experiment reduce this problem. In the 2D-ACAR setups which adopt
standard electromagnets to focus the positrons onto the sample, the geometry of the source–
sample assembly determines uniquely the way the projections are collected: the sample
must be rotated about the magnetic field (B) direction (sayx) which is in the detector
plane and normal to the projection direction. It is well known that the resolution of the 2D-
ACAR spectrometer is usually strongly asymmetric [1]: along theB-direction the overall
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resolution is determined by the spatial resolution of the 2D spectrometer (about 6.5 mm,
for the Bologna spectrometer) convoluted with twice the (negligible) penetration of the
positrons in the sample (0.2–0.4 mm). In the perpendicular direction (sayy) the resolution
is determined by the spatial resolution of the 2D spectrometer convoluted with twice the
smallest between the sample size along they-direction and the linear size of the source
spot onto the sample (up to 5–10 mm). During the rotation they- and z-directions mix,
while the x-direction is unaffected. The reconstructed planes (px0 = constant,py , pz)
are then piled up along thex-direction. Figure 11 clarifies the relevant directions of the
projection procedure. Therefore, the one-dimensional deconvolution procedure operated by
the network is applied to thepy-direction which is mostly affected by the resolution.

4. Conclusion

The limited successful results presented here indicate that it is worth investigating the
implementation of the ANN for the problem of the reconstruction of the electron–positron
momentum density. The perfect reconstruction obtained in the simple 8× 8 case, where a
large number of degrees of freedom of the weightsWij compared to the matrix size was
available, needs to be applied to larger matrices keeping a similar ratio of the size of the
matrix to the size of the weights and increasing the number of training pairs. This will
only be possible by parallelizing the computer programs and by employing several parallel
processors. By building a network able to reconstruct a 64× 64 matrix consistent with
inversion symmetry (equivalent to 128× 128 bins) one could start applying the method
to real data. Although modern spectrometers acquire with at least 256× 256 bin matrices
the loss of precision which results by using bins of double sizes should be balanced by
the benefit of the deconvolution. Up to now, the present implementation for large matrices
should be regarded merely as a tool to improve the FBP results. A positive feature of
the method is that once the training process is completed, the computing time to obtain
the reconstructed data (via equation (2)) is practically zero. Further work will consist in
establishing how well the reconstruction matricesWij , produced by training pairs adopting
noiseless projections, will perform when reconstructing noisy projected data.

The main philosophy of the neural network method is to acquire some expertise uniquely
by analysing the behaviour of some representative examples. No knowledge of the physical
process is required. The modifications due to the symmetry and the filtered projections in
input were attempts to give the network some extra information to speed up and improve
the learning procedure. A further benefit should come by inserting this extra information
in the iterative scheme which features the weightsWij rather than in the initialization and
in the form of the input data.
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